skip to main content


Search for: All records

Creators/Authors contains: "Bowler, B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We report the discovery of two mini-Neptunes in near 2:1 resonance orbits (P = 7.610303 d for HIP 113103 b and P  = 14.245651 d for HIP 113103 c) around the adolescent K-star HIP 113103 (TIC 121490076). The planet system was first identified from the TESS mission, and was confirmed via additional photometric and spectroscopic observations, including a ∼17.5 h observation for the transits of both planets using ESA CHEOPS. We place ≤4.5 min and ≤2.5 min limits on the absence of transit timing variations over the 3 yr photometric baseline, allowing further constraints on the orbital eccentricities of the system beyond that available from the photometric transit duration alone. With a planetary radius of Rp  =  $1.829_{-0.067}^{+0.096}$ R⊕, HIP 113103 b resides within the radius gap, and this might provide invaluable information on the formation disparities between super-Earths and mini-Neptunes. Given the larger radius Rp  = $2.40_{-0.08}^{+0.10}$ R⊕ for HIP 113103 c, and close proximity of both planets to HIP 113103, it is likely that HIP 113103 b might have lost (or is still losing) its primordial atmosphere. We therefore present simulated atmospheric transmission spectra of both planets using JWST, HST, and Twinkle. It demonstrates a potential metallicity difference (due to differences in their evolution) would be a challenge to detect if the atmospheres are in chemical equilibrium. As one of the brightest multi sub-Neptune planet systems suitable for atmosphere follow up, HIP 113103 b and HIP 113103 c could provide insight on planetary evolution for the sub-Neptune K-star population.

     
    more » « less
  2. Abstract

    The Great Calcite Belt (GCB) is a band of high concentrations of suspended particulate inorganic carbon (PIC) spanning the subantarctic Southern Ocean and plays an important role in the global carbon cycle. The key limiting factors controlling coccolithophore growth supporting this high PIC have not yet been well‐characterized in the remote Pacific sector, the lowest PIC but largest area of the GCB. Here, we present in situ physical and biogeochemical measurements along 150°W from January to February 2021, where a coccolithophore bloom occurred. In both months, PIC was elevated in the Subantarctic Zone (SAZ), where nitrate was >1 μM and temperatures were ∼13°C in January and ∼14°C in February, consistent with conditions previously associated with optimal coccolithophore growth potential. The highest PIC was associated with a relatively narrow temperature range that increased about 1°C between occupations. A fresher water mass had been transported to the 150°W meridian between occupations, and altimetry‐informed Lagrangian backtracking estimates show that most of this water was likely transported from the southeast within the SAZ. Applying the observations in a coccolithophore growth model for both January and February, we show that the ∼1.7°C increase in temperature can explain the rise in PIC between occupations.

     
    more » « less